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Classical limit of the hydrogen atom 
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Abstract. A wave packet which travels on an elliptic trajectory is constructed for the 
hydrogen atom. This is achieved by mapping the Schrodinger equation for the hydrogen 
atom into the equation for a four-dimensional oscillator with a constraint. A set of coherent 
states for the constrained oscillator are then shown to have at high average energy the 
classical limit properties as obtained for planetary motion, to a good approximation. 

1. Introduction 

In 1926, Schrodinger (1926) constructed a set of states for the one-dimensional harmonic 
oscillator which travel along the classical trajectory as non-spreading localised wave 
packets. These states which are also minimum uncertainty states are now well known 
as coherent states. Schrodinger conjectured that similar constructions could be made 
for the hydrogen electron which he envisaged as ‘wave groups’ moving around ‘highly 
quantised Kepler ellipses’ and ended with the remarks that ‘technical difficulties in 
the calculation are greater than in the specially simple case which we have treated here’. 

Since then many attempts have been made to understand the quasi-classical 
behaviour of the hydrogen atom. Nieto and Simmons (1978), in a series of papers, 
developed a general formalism for the construction of minimum uncertainty coherent 
states for different potentials, both confining and non-confining in one and three 
dimensions. These states, except for the harmonic oscillator and harmonic oscillator 
with centripetal barrier potentials (both of which have equally spaced energy levels), 
spread, and also in the course of time the centres of gravity of these packets become 
detached from the corresponding classical particles. Other approaches (Brown 1973, 
Jordan-Maclay 1972, Snieder 1983) involved the superposition of appropriate hydro- 
genic wavefunctions so that the resultant packet travels in the classical orbit. But 
unfortunately these attempts involved educated guesses as to what the appropriate 
combinations should be and moreover failed to give in an analytical way the ‘Keplerian 
ellipses’ of Schrodinger. 

In this paper we present a very natural construction for wave packets whose motion 
satisfies all the laws of Kepler. A well known mapping relates the Coulomb problem 
in three dimensions to a constrained oscillator in four dimensions whose coherent 
state can then be constructed in a standard way. In 0 2 we describe the mapping and 
the solution of the Coulomb problem through a solution of the corresponding oscillator 
problem. In 9 3 we present for the sake of completeness a brief discussion of the 
coherent states of the harmonic oscillator. We apply these techniques in § 4 to the 
hydrogen atom and construct the ‘wave groups’ which have the classical limit properties 
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that Schrodinger may have wanted. The algebraic details involved in the derivation 
of the key results are relegated to the appendices. 

2. Hydrogen atom as an oscillator 

The Schrodinger equation for the hydrogen atom 

in units of the Bohr radius a = h 2 / m k ,  A = 8 m k / h 2 = 8 / a ,  v4= -8mE/h2,  reduces to 
the form 

4V2+--v4 + = o .  [ : I  
Let us introduce complex coordinates la and le given by 

x + i y = 25A5; x -iy = 25x58 C X l A -  (3) 
or equivalently 

4 = (phase of CA -phase of l e ) .  e = cos-l( /5aI2 - I l e I  * )  
+llB12 

r =  I X l A + l ; l i 3  

(4) 

This is the complex form (Cornish 1984) of the Kustaanheimo-Stiefel (1965) transfor- 
mation developed by these authors to study the perturbations of planetary orbits in 
classical mechanics. The mapping was also simultaneously discovered by Ravndahl 
and Toyoda (1967) as a product of two successive mappings; first to parabolic coordin- 
ates and then again to rectangular coordinates with the introduction of an extra 
coordinate. Barut et al (1979) used this mapping in their researches on the quantum 
theory of infinite component fields. 

Solving for lA and le from (4) yields 

lA = J; COS( 012)  ei(u+4)’2 le = J; sin( 012) ei(u-4)’2 cr arbitrary. (5) 
The Laplacian is transformed as 

a a  a a  rV2 =- -+- - (6) 
a l A  a le  

so that the Schrodinger equation in the new variables becomes 

together with the constraint 

This condition (8) eliminates the dependence of the actual wavefunction P( r, 8, 4 )  on 
the auxiliary phase (+ introduced through the mapping of the physical hydrogen atom 
problem in three dimensions into the oscillator in the four variables contained through 
the real and imaginary parts of la and le. 
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Let us introduce creation and annihilation operators 

and similarly 6, and their Hermitian adjoints corresponding to le. These operators 
satisfy the canonical commutation relations 

[a , ,  4 1  = 6, [ a , ,  a, 1 = 0 = [a :  9 .:I i , j = + , -  (10)  

and similarly for the 6. The a operators, of course, commute with the 6 operators. In 
terms of these operators the Schrodinger equation (7) and the constraint condition (8) 
assume the form 

( a ~ a + + a ~ a _ + 6 ~ 6 + + 6 ~ 6 - + 2 ) ~  = ( A / ~ T ~ ) +  (11)  

( U ~ U + - U : U - ) ~ , ~ =  -(6=6+-6T6-)+. (12)  

Equation (1  1) is formally identical to the Schrodinger equation for two two-dimensional 
harmonic oscillators while equation (12)  asserts that the two oscillators should have 
equal and opposite angular momenta. Since the operators involved are of Hermitian 
quadratic form, they have non-negative eigenvalues and we have 

( A / 2 v 2 )  = ( n +  + n- + m+ + m- + 2 )  (13)  

n,-  n - =  m-- m, (14)  

the latter condition being the consequence of the constraint. We therefore have 
( h / 2 q 2 ) = 2 ( n + + m + + l ) ,  and recalling that A = 8 m k / h 2  and r ] 2 = ( - 8 E / k a ) ” 2 ,  we 
immediately arrive at the Rydberg formula 

and 

E = - ( k / 2 ~ ) / ( n + + m , + l ) ~ .  (15 )  

3. The coherent state 

The coherent states introduced by Schrodinger and revived from obscurity by Glauber 
(1963)  and Sudarshan (1963)  are constructed as superpositions of the normalised 
energy eigenstates of the harmonic oscillator 

where the energy of the state In), E,, = ( n  + f ) h w ,  is the eigenvalue of the Hamiltonian 
H = p 2 / 2 m +  mw2x2/2 = ( ~ * ~ + f ) h w ,  a and a+ being the usual creation and annihila- 
tion operators defined by a = ( p  - i m ~ x ) ( 2 m w h ) - ” ~  and a+ = ( p  + imox)(2mwh)-”*. 
These states are eigenfunctions of the annihilation operator and can also be obtained 
from the vacuum state by a displacement 
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The coherent state constitutes a state of minimum uncertainty, namely 

Ax Ap = h/2 .  (19) 

The coherent state (16), though a non-stationary state, develops with time in a rather 
simple manner, because of the linear energy spectrum E = ( n  + i ) h w  of the component 
oscillator states, and evolves at a later time into la, t )  = la( t ) )  where a ( t )  = a e-'"', 
and taking a = A e-'' it follows that 

( a ,  t j  x la, t )  = [ 2A (k) 1'2] sin(wt + e). 

Identifying the constant in square brackets with the amplitude, the expectation value 
of the displacement in the coherent state behaves like that for a classical oscillator. 
In this sense the coherent state is called a classical state. Moreover the finiteness of 
the classical amplitude demands that the classical limit be taken in the following way: 
h + 0, la1 + CO in such a way that &lal+ finite. 

4. Coherent state for the hydrogen atom 

We have seen in 0 2 that the Coulomb problem is formally equivalent to a constrained 
oscillator problem and in $ 3 we have seen how to construct coherent states. We 
therefore obtain our unconstrained coherent state as a simultaneous eigenfunction of 
the commuting annihilation operators a+,  a - ,  b, and b- with the eigenvalues a+,  a-, 
P+ and P -  respectively: 

The constraint n ,  + m, = n- + m- is implemented (as discussed by Bhaumik et a1 

(21b)  

(1976)) by writing 

a ,  = [a,/ exp[Fi(Al - U ) ]  P i  = I P A  exp[*i(A2+ r ) l  
and the projected state satisfying the constraint as 

where N is a normalisation constant. If we substitute in equation (22) the expression 
for the unconstrained state from equation (21), the Kronecker delta arising out of the 
r integration will guarantee that the constraint condition (14) is satisfied. The normali- 
sation integral (as derived in appendix 1) is easily carried out to give 

(23) ~ = u ~ o ~ 2 [ ( l ~ + / 2 + l P + 1 2 ) ( l ~ - 1 2 + I P - I  2 11 1/2 H-1'2 
where Io is the Bessel function of imaginary argument and  of order zero. 

expectation value of z in the state given by equation (22) and equate it to zero 
We want the orbit to lie in the xy plane and  to that end we will calculate the 

0 = ( z )  = (121A - lgJB) = ( 1 / v 2 ) ( ( a ? +  a,)(a-+ a:) - (bT+ b+)(b-+ b:)). (24) 
To leading order (see appendix 1) in the a and  P this yields 
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Thus to confine the orbit to the x y  plane a convenient parametrisation is 

IQ+I = p cos x 1a-I = p sin x I P+I = p sin x I P - l = P c o s x  (26) 
and we have for the normalised state 

). 
(27) 

x I p cos x e-'(*l-"' p sin x e"*i-"' p sin x e'("z+") cos e - i ( A 2 + u )  

We shall see that all physically interesting quantities will depend on the product 
pp, x and A, - A2 and that these three parameters will be found to be related to the 
size, eccentricity and the orientation of the orbit. 

Next we introduce the time evolution of the state. For this purpose we note that 
the coefficients of expansion in the state are peaked around the maximum of 

( ~ ( Y + ~ " + ~ ( Y - ~ ~ - ~  p + I m + I ~ - I m - ) ( n + !  n-! m+! m-!)-1'2 

respecting the constraint n+ + m+ = n- + m-.  Implementing the constraint by means 
of Lagrange multipliers and using Stirling's approximation for the factorials we see 
that the following values maximise the coefficient: 

N+ = (n+)max = ( P / P  ) I  a+12 = PP cos2 x N- = ( K ) , , , ~ ~  = ( p / p ) l a - / *  = p p  sin'x 

M+ = (m+)max=(p /P) (P+12=  pp sin2 x M -  = (m-)max= (p/p)IP-12= FP COS' X. 
(28) 

We can therefore expand the energy in a power series around these maximum values. 
Thus 

E = -( k/2a)(  n+ + m, + 1)-2 

= E p e a k +  h w c ( 6 + + & + + 6 - + & - ) - ~ ( h w , / p p ) ( 6 + + & + + 6 - + & _ ) 2 + .  . . 
(29) 

where 

6, = n, - N ,  

w,  = (mk2/2h3)(  pp + 1 ) - 3  - mk2/2( f ~ p p ) ~  

E ,  = m, - M ,  

and 

Epeak = -(2mk2/ h2)(  N+ + N- + M+ + M -  + 2)-2 = -( mk2/2h2)( pp + 1)-2. (31) 
The time evolution of the state entering through the factor e-iEr'", induces, to leading 
order in ( l / p p ) ,  a simple time dependence of e-'".' to each of the (Y and P. Thus the 
time dependent state is given (up to a phase factor e-'Ep-k''h) by 

x I p cos x exp[ -iw,r - i(A, - a)], . . . , p sin x exp[ -iwct + i (A ,  - a ) ]  

x p sin x exp[-iw,t + i(A2+ a)], . . . , p cos x exp[-iw,t - i ( A 2 +  a)] ) .  
(32) 

With this time dependence for the state, the expectation value of z does not evolve 
with time. In other words, the orbit, once fixed in the x y  plane, will remain so forever. 
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We can now calculate the expectation value of all dynamical variables expressing 
them in terms of creation and annihilation operators: 

(x) = (2pp/v2)[cos(Al -A2)(cos 2o,r+sin 2x)+sin(AI -A2)  sin 2wcr cos 2x1 

( y ) =  (2pp/v2)[-sin(A, -A2)(cos 2wcr+sin 2x)+cos(A, -A2)  sin 2wct cos 2x1 

(z) = 0 = (L,)  = ( L J  
( r )  = (2pp/v2)(  1 +sin 2x cos 2 0 ~ ) .  

( L z )  = pph cos 2x 

(33) 
The expressions for (x) and (y) become considerably simplified if we rotate the 
coordinate system about the z axis by an angle - (Al-A2) .  The resulting values for 
(x) and (y) then satisfy the equation of an ellipse with its axes oriented along the 
coordinate axes. Thus (A,  - A2) is the angle made by the major axis, which is also the 
direction of the Runge-Lenz vector, with the x axis. Henceforth we will choose this 
angle to be zero: 

The parameters of the orbit can now be easily read off: 

semi-major axis = 2pp/ v2  = p2p2h2/mk2 

semi-minor axis = 2pp cos 2x1 v2  = ( p2p2h2/mk2) cos 2x 

eccentricity e = sin 2x. 

(35) 

(36) 

(37) 
The energy of the state obtained as the expectation value of the Hamiltonian is given 
by 

E = -(mk2)/2p2p2h2. 

Since (x) and ( y )  are periodic with frequency 2wc, the time period of revolution 
T = 27r/2oC and Kepler's third law (Gerry 1984) follows: 

T' 4 7 ~ ~ ( h p p ) ~  4 ~ m  p=-= -- - (semi-major axis)3. 
of k4m2 k 

The normalised wavefunction (see appendix 1) in the coordinate representation is 
found to be 

(re4 I ppL, ; t )  = ( v 3 / 8  T )  e - 1 2 r / 2 [  pp ) + p p ~ ,  ( pp )I  - 1 1 2  

x 1,[(277~ppr)'l' e'"C'(sin 2x + sin e cos 4 + i sin t, cos 2x sin 4)'/*]. 
(39) 

(40) 

For a circular orbit ,y = 0 one can easily calculate the radial width of the wave packet 

Ar = [( r 2 )  - ( r)2]1/2 = t [( pph2/  - Em)]'/2 = ( 3 a / d ) (  L,/ f i ) 3 / 2  

which is time independent and vanishes in the classical limit R + 0. 
We have, thus far, not considered the spreading of the wave packet with time. To 

understand, in a simple situation, how it disperses let us concentrate, for the moment, 
on a special state moving on a circular trajectory (x = 0): 

I PP, r )  = ( TPP ) 
tm 

dv exp[-( v2/2pp)  -2iw,tv+3iwCrv2/pp] 
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In the above we have retained the third term in the energy expansion (29) in the 
time evolution of the state and replaced the summation by an integration over the 
quantum numbers (for details see appendix 2) which can be carried out analytically. 
As before, ( r )  turns out to be (2pup/h2) and A r ( = 3 h (  pp/4(-E)m)’I2) is time indepen- 
dent. The plane of the orbit, on average, also remains fixed and has a fixed width 
in the z direction. Most interesting are the time evolutions of the average values of x 
and y 

(x )=(2 /v2 )  e x p [ - ( 9 w f t 2 ) / ( p p ) - 1 / ( 4 p p ) ] ( p p  cos2wct+2w,tsin2wct+. . . )  (42) 

(y)=(2 /v2)  e x p [ - ( 9 0 f t 2 ) / ( p p ) - 1 / ( 4 p p ) ] ( p p  sin2wct-2wct cos2wCt+. . .). (43) 

For large times both (x) and ( y )  go to zero keeping ( r )  constant. This simply means 
that the packet spreads along the trajectory and asymptotically becom’es uniformly 
distributed over a ring. The terms linear in time need careful consideration. Such 
terms remind us of the secular terms that arise in the perturbative solution of non-linear 
differential equations, e.g. the equation for the Duffing oscillator (Nayfeh 1973) where 
a series of such terms when summed up again yield oscillatory functions. We anticipate 
a similar presence of secular terms here and identify the terms in the bracket as the 
first two terms in the expansion of 

(x )=(2pp /v2)  e x p [ - ( 9 w ~ t 2 ) / ( p u p ) - 1 / ( 4 p p ) ]  cos[2wct-r tan-’(2wc/pup)+. . . I  

( y )  = (2pp/v2)  exp[-(9wft2)/( p p ) -  1/(4pp)] sin[2wct - t tan-’(2wC/pp)+. . .]. 
(44) 

(45) 

Since the product pup is related to the size of the orbit, the second terms in the arguments 
of the trigonometric functions give just an amplitude dependent frequency shift. 

The calculation for the dispersion of the packet on an elliptic orbit can be carried 
out in an analogous manner. We give here only the conclusions. It turns out that an 
elliptic orbit is unstable against radial spreading in such a way that with time the orbit 
approaches a circular configuration keeping, of course, the energy and angular momen- 
tum conserved. Thus, asymptotically, the conclusions obtained for the circular orbit 
case apply to the elliptic orbit too; the probability distribution ultimately gets uniformly 
smeared over an asymptotic circular ring of finite, time independent width. 

From equations (44) and (45) we see that the time T~ = ( p ~ ) ’ / ~ / 3 w ,  plays the role 
of a characteristic time in which a wave packet gets smeared over a circular orbit. Let 
us make an estimate of this time for a macroscopic system like the Earth moving round 
the Sun. Eliminating pup in terms of the orbit radius r we find 

TS = (2M/ h W C ) ” * (  r/3)  

and taking h = 
the lifetime of the Earth as a compact object comes out to be 

erg s, M = 6 x lo2’ g, r = 1.5  x lOI3 cm and TEanh = 1 yr.= 7~ x lo7 s, 

which being considerably larger than the present age (4.57 billion yr) of the Solar 
System (Kirsten 1978) is comforting! 
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Appendix 1 

Here we give a derivation of the normalisation integral. From equation (22) we find 

1 = ( (a+a-P+P-) I (a+a-P+P-))  

r z n  ~2~ 

= N 2  J J (dU/ 2 v )  (da ' /  2 v) (  a : a LP :P LI a+ a -P+P -) 
0 

where the primes indicate quantities defined in equation (21b) with cr+ U' necessary 
in view of the fact that coherent states d o  not constitute an  orthogonal set. Inserting 
in the unconstrained state (which is not normalised), the expansion given by equation 
(21a) and using the parametrisation for the a and /3 from equations (21 b )  and invoking 
the orthonormality of the harmonic oscillator states we obtain 

" "  

I = N ~  J J ( d u / 2 v ) ( d a ' / 2 v )  
n , m ,  

x exp[i( n+ + m+ - n- - m-)(a  - U ' ) ]  

where 

x=Ia+12+la_12+IP+12+IP_12 

y =  la+12+ILy-12--~+12-Ip-12. 

To arrive at the above we have carried out the summations and split the resulting 
exponentials into sines and  cosines. Next we use the formulae 

e i z  sin 8 - - C ~ ~ ( 2 )  eike e z  cos 8 - - 1 j k ( - i Z )  e i k [ ( r / 2 ) - e l  

k k 

and carry out the U integrations to yield 

1 = N2 C Jk( - ix)Jk(y)  elkrr'2. 
k 

The summation over k is readily done with the help of the addition formulae for 
Bessel functions (Watson 1952) to give us the desired result, namely equation (22). 

The calculation of the expectation value of z proceeds in an  analogous manner. 
Since the unconstrained states are eigenstates of the annihilation operators we obtain 
from equation (24) 

where again the prime indicates that the quantities involved are functions of U'. In 
the above we have neglected terms which arise out of the re-ordering of the creation 
and annihilation operators, i.e. the commutators which, of course, are one order of 
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magnitude lower in the a and p. The integration over the U can now be carried out 
exactly as in the case of the normalisation integral to yield equation (25 ) .  

The coordinate representation (39 )  for the constrained normalised state is obtained 
by recognising that the unconstrained state ( 2 1 a )  is a simultaneous eigenfunction of 
the annihilation operators whose coordinate representation is given by equation ( 9 ) .  
Solution of the eigenvalue equations, which are linear first order differential equations, 
gives us the unconstrained state 

The constrained coherent state I(a+a-p+p-)) is obtained from the above by using 
the parametrisations ( 2 1 6 )  and (26 )  for the Q and p and carrying out integration with 
respect to U as in (22 ) .  We also explicitly institute a time dependence e-iwct for each 
of the a and p. The transition from the variables fb, and lB to the spherical polar 
coordinates is obtained through ( 5 ) .  Finally equation (39 )  is arrived at after some 
algebraic manipulations involving the generating function and the addition theorem 
of Bessel functions. 

Appendix 2 

For the derivation of the special state representing circular trajectories with x = 0, we 
superpose harmonic oscillator states with m+ = n- = 0 so that the constraint equation 
(14 )  reduces to n+ = m - .  

Thus we have 

3; 

la+@-) = ( a + P - ) " + / ( n + ! ) l n + ,  O,o, m- = n+). 

Using the parametrisation employed to confine the orbit to the xy plane (equation 

n + = O  

( 2 6 ) ) ,  for circular orbits (x = 0) we have 

I f f + I =  P I P-l = P. 

The coefficients of expansion in the state are peaked around N+ = (n+)max = pp. 
Expanding the coefficient in the power series around the maximum value and retaining 
terms quadratic in v =  n + - p p  we have 

(141p+l)n+/(n+!) -,exp(pp - v 2 / 2 p p ) .  

The energy expansion (29 )  for this special state becomes 

E=Epeak+ f i ~ , ( 2 ~ ) - ( 3 h ~ , / p p ) ~ ' +  

E ~ ~ ~ ~ =  - ( m k 2 / 2 h 2 ) ( p p +  I ) - ' .  

Thus under these approximations we can write the special state under consideration 
at any instant of time t as (up to a phase factor exp(-iE,,,,t/h)), 

1 pp, t )  = N 1 exp[ -( v 2 / 2 p p )  - 2iw,tv + (3iw,tv2)/( pp) + . . .] I p p  + v, 0, 0, pp + v). 

Here N is the normalisation constant. 

+oc 

"=-E 
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Replacing the summation by an integration we arrive at (41) 
+m 

I pp, t )  = N 1 dv exp[-(v2/2w) 
--cc 

-2io,tv + (3iuctv2)/( p p )  + . . .] 1 pp + U, 0, 0, pp + v). 
The normalisation constant can easily be evaluated to obtain 

N = ( 7rpp) - ' I 4 .  
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